

Five Questions a Project Manager Should Ask About Every Estimate

NASA Project management Challenge 2008

Daytona, Florida

Anthony A. DeMarco

President, PRICE Systems, L.L.C. 17000 Commerce Parkway – Suite A Mt. Laurel, NJ 08054 856.608.7214 Anthony.DeMarco@PRICESystems.com

Every day, project managers make decisions based on estimates.

- How much will it cost?
- How long will it take?
- How much can we do in 6 months?
- How much can we do for \$3M?

Why are we overrunning our budget?

Why does the deliverable not meet all requirements?

Why didn't you tell me that it was such a big change at the time?

Project Managers must be good estimators to be successful.

Importance of Estimation

The key to successful project completion is a rational cost and schedule estimate. These estimates are the foundation for trade-off studies and management decisions regarding project lifecycle planning.

Stanford Business Research Foundation http://www.sbrf.org/estimation.htm

David Cottengim, an accountant at the Defense Finance and Accounting Service, said a study of 250 complex, software-intensive projects identified only 25 as successful in achieving their initial cost, schedule and performance objectives. He defines a failed project as one that is six months over schedule and 15 percent over its cost estimate.

The successful projects all made good use of:

- Project planning
- Cost estimating
- Measurement techniques
- Milestone tracking.

http://www.fcw.com/article102817-05-28-07

To be good estimators, project managers must....

- develop personal estimating Rules of Thumb
 - When quick decisions are required
 - To challenge the rationale and assumptions behind estimates
 - To build confidence and become and "educated consumer" of estimates.
- support rigorous cost, schedule, & risk models and databases
 - To develop rigorous, accurate metrics over time
 - To establish estimating credibility
 - To establish corporate knowledge
- ask <u>five</u> questions about <u>every</u> estimate to establish a baseline for estimating rules of thumb and rigorous models

What are rules of thumb, metrics, models, and the five questions?

- Rules of Thumb
- Mathematical Models
- Project Management Triangle
- Five Questions

Rules of Thumb

A **rule of thumb** is a principle with broad application that is not intended to be strictly accurate or reliable for every situation. It is an easily learned and easily applied procedure for approximately calculating or recalling some value, or for making some determination. A simple model.

- Tailor Rule of Thumb A simple approximation that was used by tailors to determine the wrist, neck, and waist circumferences of a person through one single measurement of the circumference of that person's thumb. The rule states, typically, that twice the circumference of a person's thumb is the circumference of their wrist, twice the circumference of the wrist is the circumference of the neck, and twice around the neck is the person's waist. For example, if the circumference of the thumb is 4 inches, then the wrist circumference is 8 inches, the neck is 16 and the waist is 32. An interesting consequence of this is that for those to whom the rule applies this simple method can be used to determine if trousers will fit: the trousers are wrapped around the neck, and if the two ends barely touch, then they will fit. Any overlap or lack thereof corresponds to the trousers being too loose or tight, respectively.
- Marine Navigation A ship's captain should navigate to keep the ship more than a thumb's width from the shore, as shown on the nautical chart being used. Thus, with a coarse scale chart, that provides few details of nearshore hazards such as rocks, a thumb's width would represent a great distance, and the ship would be steered far from shore; whereas on a fine scale chart, in which more detail is provided, a ship could be brought closer to shore.
- Etiquette In a formal place setting, the silverware and the dinner plate should be set back from the edge of the table a length equal to the distal phalanx of the thumb.

http://en.wikipedia.org/wiki/Rule_of_thumb

Mathematical Models

A mathematical model is an <u>abstract model</u> that uses <u>mathematical</u> language to describe a <u>system</u>. Mathematical models are used particularly in the <u>natural sciences</u> and <u>engineering</u> disciplines (such as <u>physics</u>, <u>biology</u>, and <u>electrical engineering</u>) but also in the <u>social sciences</u> (such as <u>economics</u>, <u>sociology</u> and <u>political science</u>); <u>physicists</u>, <u>engineers</u>, <u>computer scientists</u>, and <u>economists</u> use mathematical models most extensively.

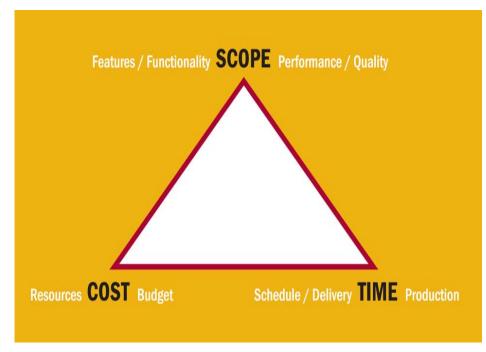
- Eykhoff (1974) defined a mathematical model as 'a representation of the essential aspects of an existing <u>system</u> (or a system to be constructed) which presents knowledge of that system in usable form'.
- Mathematical models can take many forms, including but not limited to dynamical systems, statistical models, differential equations, or game theoretic models. These and other types of models can overlap, with a given model involving a variety of abstract structures.
- Examples
 - The Malthusian Growth Model,

$$P(t) = P_0 e^{rt}$$

where P0 = Initial Population, r = growth rate, t = time

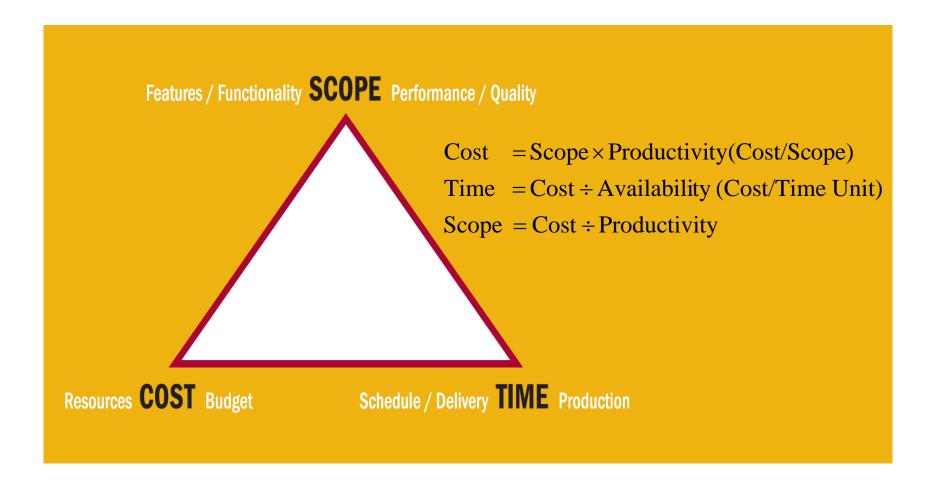
Learning Curve Model

$$Y_x = Kx^{\log_2 b}$$

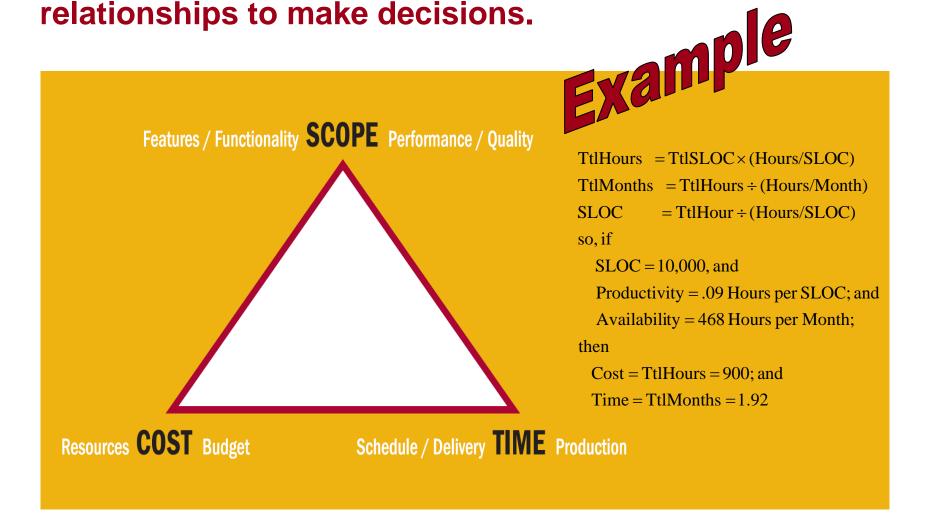

where K = first unit cost, $Y_x = cost for xth unit$, x = unit number, and b = learning percentage

Wikipedia (various sources)

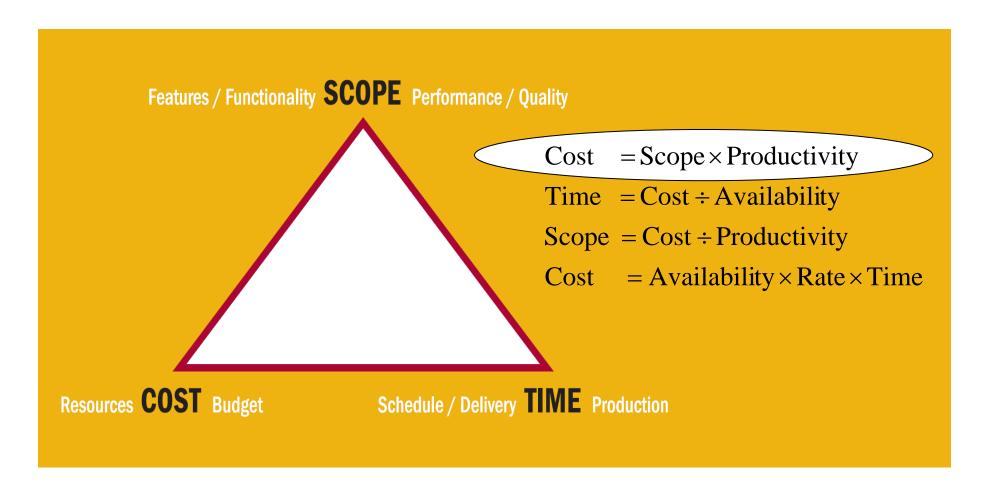
The Project Management Triangle



Each side represents a constraint. One side of the triangle cannot be changed without impacting the others.



The points of the triangle are connected by simple relationships



Project Managers use the Triangle's simple relationships to make decisions.

The most challenging relationship is Cost as function of Scope.

Project Managers must develop Rules of Thumb and utilize Rigorous Models for Cost = f(Scope).

Rigorous Cost, Schedule, and Risk Estimating Models

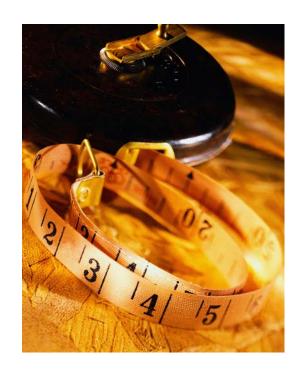
Rules of Thumb

 $Cost = Scope \times Productivity \times Reality Factors$

Rules of Thumb are simple models based on averages, while Rigorous Models take into account several other Reality factors. Reality factors help you normalize data to determine better Rules of Thumb.

Project Managers must identify the metrics of which they are most comfortable for their models.

Scope metrics


- Hardware Weight, Objects, Parts
- Software SLOC, FPs, OPs, Use Cases

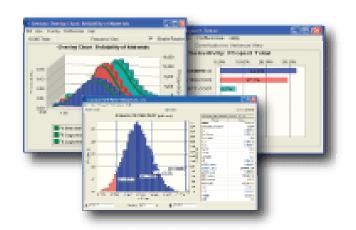
Productivity metrics

- Hardware Cost/Weight,, Cost/Object
- Software Hours/SLOC

Reality Factor metrics

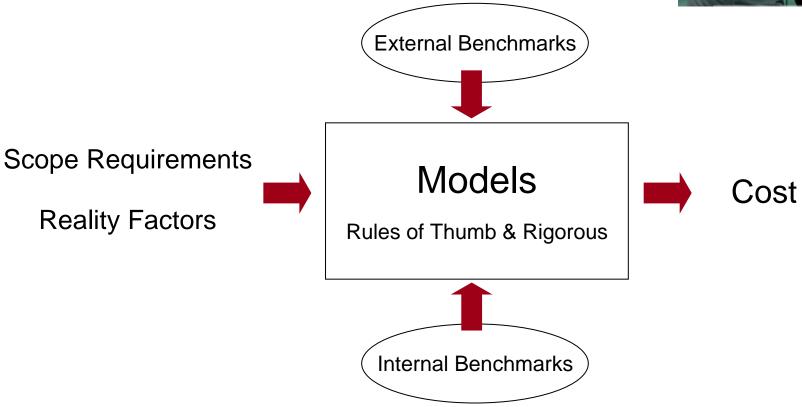
- Hardware Complexity, features, quantities, delivery rate, schedule compression, learning rate,
- Software language, application, complexity, memory utilization
- General reuse, engineering maturity, operating environment, quality

Project Managers must know the risk associated with an estimate.


Rule of Thumb

 $(BestCase + (4 \times MostLikely) + WorstCase)$

6

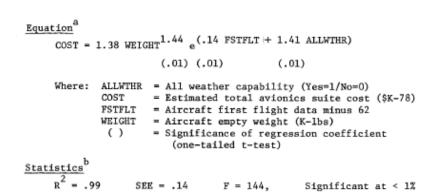

Rigorous Model

Project Managers should develop Rule of Thumb Models and Rigorous Models from internal and external benchmarks for credibility

External Benchmarks

Table 1: Rules of Thumb Based on LOC Metrics for Procedural Languages (Assumes 1 work month = 132 work hours)

() 100 a 1110 0 1 1		- 102 WOIN	.ou.o,			
Size of	Coding	Coding	Testing	Noncode	Total	Net LOC
Program	LOC per	Effort	Effort	Effort	Effort	per
in LOC	Month	(Months)	Percent	Percent	(Months)	Month
1	2500	0.0004	10.00%	10.00%	0.0005	2083
10	2250	0.0044	20.00%	20.00%	0.0062	1607
100	2000	0.0500	40.00%	40.00%	0.0900	1111
1,000	1750	0.5714	50.00%	60.00%	1.2000	833
10,000	1500	6.6667	75.00%	80.00%	17.0000	588
100,000	1200	83.3333	100.00%	100.00%	250.0000	400
1,000,000	1000	1000.0000	125.00%	150.00%	3750.0000	267



http://www.compaid.com/caiinternet/ezine/capers-rules.pdf

Table 3

REGRESSION EQUATION, DATA, AND RESULTS FOR AIRCRAFT CHARACTERISTICS CASE

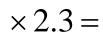
An Analysis of Combat Aircraft Avionics Production Costs, RAND

External Benchmarks

Phase	Percentage	Phase		Phase	Percentage	Phase
No.			ог	No.		
1.	10 %	Requirements		1.	11 %	Requirements
		Analysis				Analysis
2.	30 %	Requirements		2.	11 %	Anforderungs-
		Specification				Specification
3.	30 %	DP-Concept		3.	5%	Logical System
						Specification
4.	25 %	Coding		4.	10 %	Physical
						Design
5.	5 %	Delivery		5.	46 %	Coding and
						Module Test
				6.	5 %	Implementation
				7.	12 %	System Test

http://www.compaid.com/caiinternet/ezine/bundschuh-est.pdf

Task Rule Of Thumb						
	A full time Project Manager is required for every six staff assigned to the project. A typical MIS project requires the equivalent of 2/3 full time staff. Applying this rule of thumb suggests that the Project Manager should be assigned between 33% and 50% or the duration of the project.					
Business Analysis	Allow a figure of 20% of the time allowed for the technical tasks to complete the business specification.					
Systems Analysis and Design	Allow a figure of 25% of the time allowed for the technical tasks to complete the design specification.					
Infrastructure Support	Allow a figure of 10% of the time allowed for the technical tasks.					
Peer Testing	Allow a figure of 10% of the time allowed for the technical tasks.					
Integration Testing	Allow a figure of 15% of the time allowed for the technical tasks.					
Acceptance Testing	Allow a figure of 15% of the time allowed for the technical tasks.					
Deployment	Allow a figure of 5% of the time allowed for the technical tasks.					


http://www.projects.ed.ac.uk/areas/research/RAE/RES018/EstimationGuidelines.shtml

Internal Benchmarks

Tailor's Rule of Thumb

 $\times 2.3 =$

$$\times 2.3 =$$

Measuring actual results and calibrating models builds accuracy, confidence and credibility

Personal experience, Anthony A. DeMarco, PRICE Systems, LLC

Internal Benchmarks

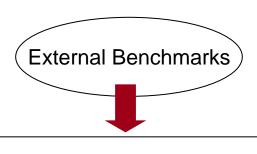
		<u>Q1</u>	<u>Apr</u>	<u>May</u>	<u>Jun</u>	* Jul *	<u>Aug</u>	Sep	<u>Oct</u>	Nov	<u>Dec</u>	Avg.
PRICE	<u>Orders</u>											1
	Best Case	16.582	16.911	17.539	17.992	17.372	17.397	17.162	16.517	16.126		17.066
	Most Likely	15.596	15.716	15.995	16.481	16.529	16.071	15.815	15.757	15.620		15.953
	Worst Case	14.312	14.762	14.489	14.756	15.514	15.122	14.899	15.017	15.022		14.877
		15.546	15.756	16.001	16.445	16.500	16.134	15.887	15.760	15.605		15.959
•		14.897	15.679	15.618	15.952	16.261	15.959	15.735	15.690	15.666		15.718
Division 1	<u>Orders</u>											1
	Best Case	5.561	6.029	6.488	6.700	6.658	6.618	6.658	6.633	6.554		6.433
	Most Likely	5.417	5.529	6.231	6.477	6.416	6.385	6.354	6.326	6.383		6.169
	Worst Case	5.346	5.329	6.080	6.300	6.340	6.233	6.213	6.183	5.980		6.001
		5.525	5.909	6.421	6.638	6.602	6.557	6.583	6.557	<i>6.480</i>		6.363
Division 2	<u>Orders</u>											1
	Best Case	5.952	5.896	5.992	5.570	5.565	5.492	5.230	4.843	4.742		5.476
	Most Likely	5.319	5.234	5.301	5.270	5.161	5.089	4.917	4.757	4.643		5.077
	Worst Case	4.322	4.808	5.019	4.871	4.884	4.959	4.701	4.527	4.643		4.748
l		4.585	4.959	5.145	4.981	4.980	5.026	4.775	4.582	4.653		4.854
Division 3	Orders											1
	Best Case	5.069	4.986	5.059	5.722	5.149	5.286	5.273	5.041	4.830		5.157
	Most Likely	4.860	4.953	4.462	4.735	4.953	4.597	4.543	4.674	4.594		4.708
	Worst Case	4.644	4.625	3.390	3.585	4.290	3.930	3.986	4.307	4.399		4.128
		4.787	4.811	4.052	4.333	4.680	4.377	4.377	4.552	4.534		4.500

VP 1
$$\frac{(8 \times BestCase + MostLikely + WorstCase)}{10}$$

$$\begin{array}{c} VP \ 2 & \frac{(BestCase + MostLikely + 8 \times WorstCase)}{10} \end{array}$$

$$VP \ 3 \qquad \underline{ (BestCase + (4 \times MostLikely) + (4 \times WorstCase)}$$

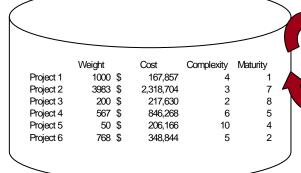
9


Measuring actual results and calibrating models builds accuracy, confidence and credibility

Personal experience, Anthony A. DeMarco, PRICE Systems, LLC

Project Managers should develop Rule of Thumb Models and Rigorous Models from internal and external benchmarks for credibility

Scope Requirements


Reality Factors

Models

Rules of Thumb & Rigorous

Cost

Internal Benchmarks

Project databases that include technical parameters, programmatics and cost are necessary for internal benchmarks

Project Managers should ask five questions about every estimate.

- 1. What is the measure of scope?
- 2. What is the productivity?
- 3. What is the resource availability assumption?
- 4. What are the most significant reality factors making this different than the norm?
- 5. What is the uncertainty of the parameters and the risk in the estimate?

The five questions will drive the estimating cultural and behaviors that you desire

Example – PM Rules of Thumb for Software

Scope = SLOC

Productivity = 0.10 hours per SLOC

• Risk = $(BestCase + MostLikely + (4 \times WorstCase))$

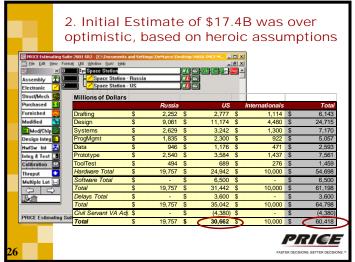
6

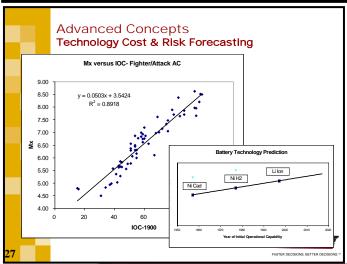
Reality = Manned Space 3x
 Unmanned Space 1x

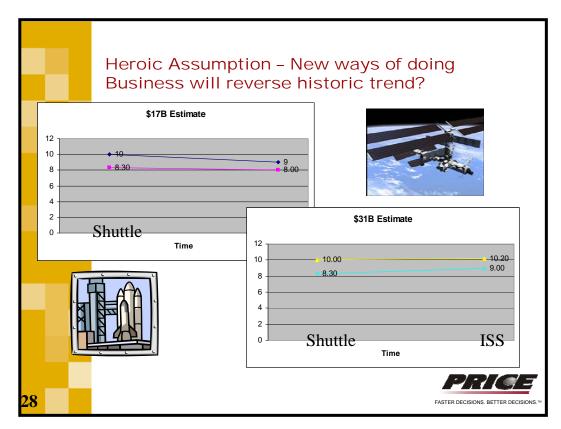
= Studies 0.5x

= Mature Tech 1x

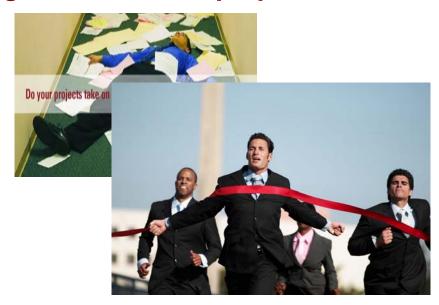
= Immature Tech 3x


Buildup =


Requirements Analysis	5
Requirements Specification	10
Design	20
Code	30
Test	30
Delivery	5


...or \$Code x 3.3

International Space Station Example


Analysis performed with IMCE Task Force (Young), Anthony A. DeMarco, PRICE Systems, LLC

Every day, project managers make decisions based on estimates.

So create your estimating culture and be prepared!

- How much will it cost?
- How long will it take?
- How much can we do in 6 months?
- How much can we do for \$3M?

Thank you for evaluating the risk. We should not do this.

I understand we can't get everything we want and your plan addresses the top priorities.

I am happy we stayed on schedule and did not add that seemingly small requirement.

You really know how to establish realistic expectations and deliver.

You have a lot of credibility

Summary

To be successful, project managers should...

- Develop personal estimating Rules of Thumb from external and internal benchmarks
- Utilize rigorous estimating models and enterprise databases
- Ask five questions about every estimate to judge its credibility and to fortify your personal Rules of Thumb and estimating models and databases

References

NASA Models& Databases

http://cost.jsc.nasa.gov/index.htm

Rules of Thumb

http://www.rulesofthumb.org http://www.rulesofthumbs.com

Thank you for your time

Anthony A. DeMarco

President, PRICE Systems, L.L.C. 17000 Commerce Parkway – Suite A Mt. Laurel, NJ 08054 856.608.7214 Anthony.DeMarco@PRICESystems.com

